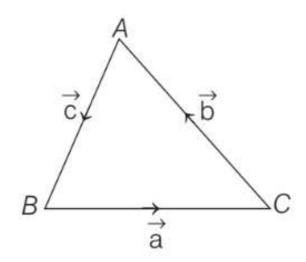
If the vectors $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ from the sides BC, CA and AB respectively of a $\triangle ABC$, then

(a)
$$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}} = 0$$


(2000, 2M)

(b)
$$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$$

(c)
$$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}$$

(d)
$$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}} = \overrightarrow{\mathbf{0}}$$

By triangle law, $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$

 $[:: \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}} = \overrightarrow{0}]$

Taking cross product by \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} respectively,

$$\overrightarrow{a} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{0} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}}$$

$$\Rightarrow \qquad \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$$

Similarly,
$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{b}} \times \vec{\mathbf{a}}$$

$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$